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SYNOPSIS

The pressure-sensitive adhesive (PSA) properties and dynamic mechanical properties
were measured for the poly(butyl acrylate) (PBA)/poly(vinylidene fluoride-co-hex-
afluoroacetone) [P(VDF-HFA)] blends. The PSA properties of PBA adhesive could be
controlled by blending P(VDF-HFA). In order to investigate the relationship between
PSA properties and dynamic mechanical properties for PBA/P(VDF-HFA) blends, the
master curves of the dynamic mechanical properties, such as storage modulus G *, loss
modulus G 9, and dynamic loss tangent tan d, were constructed with the temperature-
rate superposition principle. The probe tack and peel strength for PBA/P(VDF-HFA)
blends were correlated with G * and G 9. Since the G * and G 9 values increased with
increasing P(VDF-HFA) content, the holding power of PBA adhesive could be advanced
by blending P(VDF-HFA). q 1997 John Wiley & Sons, Inc.

INTRODUCTION printing, medical, electrical insulation, and auto-
mobile industries. The PSA properties of acrylic
adhesive have been controlled by blending ofAn original analysis of chemical and physical fac-
tackifiers or dissimilar polymers, by moleculartors affecting pressure-sensitive adhesive (PSA)
weight and its distribution, and also by copoly-properties was proposed by Dahlquist.1 He said
merization with polar monomer and curing sys-that the molecular contact between adhesive and
tems. Particularly, Kim and Mizumachi6–8 haveadherend is completely established when com-
reported the relationship between miscibility andpressive creep compliance of the adhesive at 1 s
PSA properties in the blends of acrylic adhesivesis higher than 1007 cm2/dyn (Dahlquist crite-
with various tackifiers.rion). In recent years, the PSA properties (peel

adhesion, tack, and holding power) have been in- It is well known that the poly(ethyl acrylate)
terpreted by considering several factors, such as (PEA), poly(butyl acrylate) (PBA), and poly(2-
dynamic mechanical properties, surface tension, ethylhexyl acrylate) (P2EHA) have been utilized
and miscibility;2–5 but PSA properties could not as the main components of acrylic adhesives be-
be clarified. The values of PSA properties are cause these polymers have low glass transition
thought to be influenced by the bonding and de- temperature (Tg õ 0207C) and are very flexible
bonding processes. at room temperature. On the other hand, poly(vi-

In general, PSA is classified into rubber, nylidene fluoride-co-hexafluoroacetone) [P(VDF-
acrylic, vinyl ether, and silicone adhesives. Re- HFA)] possessing nontackiness, water repellency,
cently, acrylic adhesives have been extensively and heating and chemical resistance has been
utilized in industries such as the packaging, known, and the miscibility between P(VDF-HFA)

and dissimilar polymers have been investigated.9–11

Using attenuated total reflection–Fourier
transform infrared spectroscopy (ATR-FTIR), X-

* To whom correspondence should be addressed.
ray photoelectron spectroscopy (XPS), and micro-
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q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/030307-07 scopic observation, we12–15 found that the poly(2-
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Table I Molecular Weights and Tg of Polymers tor in toluene. The molecular weights and their
distributions and the glass transition tempera-

Tg tures of PBA and the P(VDF-HFA) with 8 mol %
Polymer Mn Mw /Mn (7C) HFA content, supplied by Central Glass Co. Ltd.

in Japan, are represented in Table I. Molecular
PBA 24700 5.76 055 weights were determined using a Toso Co. Ltd.P(VDF-HFA) 52000 2.50 028

CP8000 GPC system in 0.1 wt % THF solution.
The samples of the PBA/P(VDF-HFA) blends
used for PSA properties were prepared by solutionethyl hexyl acrylate-co-acrylic acid-co-vinyl ace-
casting from 20 wt % THF solution onto a polytate) [P(2EHA-AA-VAc)] /P(VDF-HFA) blends
(ethylene terephthalate) (PET) base using theexhibit surface segregation or gradient struc-
knife coating system. After coating, the films wereture. Then, tack value of the bottom surface was
dried at 907C for 2 min and kept at 23 { 37C andremarkably larger than that of surface for
65 { 5% RH for more than a week. The blendsP(2EHA-AA-VAc) /P(VDF-HFA) (50/50) blend
were 30 mm thick in their dry state. The speci-because the P(VDF-HFA) component enriched
mens were allowed to dry further in a vacuum forthe upper surface and P(2EHA-AA-VAc) was
seven days at 40 Ç 607C. PSA tapes generallyprecipitated at bottom. Therefore, we expected
consist of adhesive, backing film, and releasethat these blends should be utilized as a new type
liner. Film surfaces were covered with the releasePSA tapes, without backing film. In our previous
liner [poly(dimethyl siloxane) coated on paper].study,16,17 the PSA properties and dynamic me-
The PSA properties were measured in blends withchanical properties were measured for PEA/
P(VDF-HFA) contents varied from 0 to 50 wt %P(VDF-HFA) blends. Eventually, we found that
region. The blends with more than 50 wt %PSA properties of PEA could be controlled by
P(VDF-HFA) contents exhibit nontackiness.blending P(VDF-HFA).

In this study, PSA properties (peel adhesion,
probe tack, and holding power) and dynamic me- Measurements
chanical properties (G *, G 9, and tan d ) of the

The measurement of the PSA properties were car-PBA/P(VDF-HFA) blends were measured. The
ried out according to Japanese Industry Standardmaster curves of dynamic mechanical properties
(JIS-Z0237). The peel adhesion of PBA/P(VDF-for PBA/P(VDF-HFA) blends were constructed
HFA) blends to stainless steel was performed atby means of the temperature-rate superposition
180 degree peel angle using a Toyo Balldwin Co.principle. Finally, the relationship between PSA
Ltd. TENSIRON/UTM-4-100. The peel rate wasproperties and dynamic mechanical properties for
300 (mm/min). The probe used in probe tack wasPBA/P(VDF-HFA) blends was examined by con-
made of stainless steel. These measurementssidering bonding and debonding processes.
were carried out at 23 { 37C and 65 { 5% RH.
The holding power was also measured with stain-

EXPERIMENTAL less steel using a Nitto Rika Kogyo Co. Ltd. NDC-
100S creep tester at 407C.

Materials The dynamic mechanical properties of PBA/
P(VDF-HFA) blends were carried out with aThe PBA was prepared by solution polymerization

at 707C for 8 h using benzoyl peroxide as an initia- shearing method using Rheometrics Co. Ltd. Ad-

Table II PSA Properties of PBA/P(VDF-HFA) Blends

P(VDF-HFA) Content
(wt %) 0 10 20 30 40 50

180 degree peel
adhesiona (g/25 mm) 1850b 200 80 22 10 —

Probe tack (g/5 mm f) 736 745 587 207 39 15
Holding power (s) 178b 1243b 5504b 57531b — —

a Dwell time 24 h.
b CF, cohesive failure of adhesive layer.
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Figure 2 Temperature dependence of loss modulusFigure 1 Temperature dependence of storage modu-
G 9 of PBA/P(VDF-HFA) blends. Content of P(VDF-lus G * of PBA/P(VDF-HFA) blends. Content of P(VDF-
HFA) is as follows (wt %): (l ) 0; (. ) 20; (j ) 40.HFA) is as follows (wt %): (l ) 0; (. ) 20; (j ) 40.

507C, PBA flows in this region. On the other hand,vanced Rheometrics Expansion System (ARES).
the PBA/P(VDF-HFA) 80/20 and 60/40 blendsThe dynamic mechanical properties, such as stor-
exhibit the plateau modulus. As shown in Figureage modulus G *, loss modulus G 9, and dynamic
2, the curves of the G 9 versus temperature plotsloss tangent tan d, were measured in the ranges
are similar to that of the G * versus temperatureof 060 to 1007C and of 0.5 to 500 (rad/s) . The
plots for PBA/P(VDF-HFA) blends. Figure 3temperature dependence of G *, G 9, and tan d of
shows the temperature dependence of tan d forthe PBA/P(VDF-HFA) blends was carried out at
PBA/P(VDF-HFA) blends. The maximum tem-6.28 (rad/s) Å 1 Hz.
perature of tan d shifts slightly toward higher
temperature side with increasing P(VDF-HFA)
content and the breadth of tan d–temperatureRESULTS AND DISCUSSION
peak of the 60/40 blend is greater than that of
the 100/0 blend. In these blends, a single Tg wasThe results of PSA properties for PBA/P(VDF-
obtained on all differential scanning calorimetryHFA) blends are represented in Table II. The 180
(DSC) thermograms and the homogeneous mor-degree peel adhesion and probe tack decreases
phology was observed by scanning electron mi-with increasing P(VDF-HFA) content. Holding

power increases with increasing P(VDF-HFA)
content. It is judged that PSA properties of PBA
can be controlled by blending P(VDF-HFA). Rela-
tively, the values of probe tack of PBA/P(VDF-
HFA) blends are higher than that of PEA/
P(VDF-HFA) blends, whereas 180 degree peel
adhesion and holding power of PBA/P(VDF-
HFA) blends are lower than that of PEA/P(VDF-
HFA) blends. We expect that the PSA properties
for PBA/P(VDF-HFA) blends are evaluated by
dynamic mechanical properties.

Therefore, the temperature dependence of dy-
namic mechanical properties were investigated
for the PBA/P(VDF-HFA) blends. The tempera-
ture dependence of G * of PBA/P(VDF-HFA) 100/
0, 80/20, 60/40 blends is shown in Figure 1. The Figure 3 Temperature dependence of dynamic loss
G * decreases with rising temperature and in- tangent tan d of PBA/P(VDF-HFA) blends. Content
creases with increasing P(VDF-HFA) content. of P(VDF-HFA) is as follows (wt %): (l ) 0; (. ) 20;

(j ) 40.Since the G * of PBA suddenly decreased about
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croscopy (SEM) in our previous report.18 We judge
that the PBA/P(VDF-HFA) blends are miscible
at low temperature.

Next, the relationship between PSA properties
and dynamic mechanical properties for PBA/
P(VDF-HFA) blends was examined using the
temperature-rate superposition principle. The
master curves of G *, G 9, and tan d for the PBA/
P(VDF-HFA) 80/20 blend are shown in Figure 4,
where the reference temperature is 298 K. Figure
5 shows the relationship between the shift factor
log aT and temperature for the PBA/P(VDF-
HFA) 80/20 blend. In general, the relationship
between log aT and temperature corresponding to
the WLF equation is expressed by the following

Figure 5 Shift factor, log aT versus temperature forWLF equation19:
the PBA/P(VDF-HFA) 80/20 blend.

log aT Å [0C1(T 0 Tr ) ] / [C2 / (T 0 Tr ) ] (1)

where Wa is the work of adhesion between adhe-
where C1 and C2 are constants, T is temperature, sive and adherend, B is the function of bonding
and Tr is the reference temperature (298 K). The process and depends on the plateau modulus Ge
WLF fitting parameters (C1 , C2) for PBA/P(VDF- of adhesive, and D correlates with debonding pro-
HFA) blends are represented in Table III. cess and increases with increasing loss modulus

The PSA properties can be evaluated with dy- G 9 of adhesive. Therefore, parameter D is influ-
namic mechanical properties, such as G * and G 9. enced strongly by separation speed and tempera-
Because the bonding and debonding processes for ture. When the Ge value is equal or lower than
PSA tests are strongly dependent on temperature 107 (dyn/cm2) (Dahlquist criterion), the B value
and separation speed. should remain constant for PSA tests.1 That is to

Tse20,21 pointed out that the PSA tackiness T say, the extensive molecular contact of adhesive
is expressed by considering the bonding and de- is established on microscopically rough adherend
bonding processes of adhesive, as follows: surfaces. In general, adhesives possess the same

surface characteristics because their chemical
composition is similar. Therefore, the Wa valueT Å WarBrD (2)
should be constant with identical adherend. If the
Ge value of adhesive fulfills the Dahlquist crite-
rion, eq. (2) can be simplified as following equa-
tion:

T Å (constant)rD (3)

By eq. (3), the PSA tackiness T can be correlated
with the only G 9. The characteristic debonding
frequency of each adhesive properties is expressed
in the following manner.

Test frequency Å 2pr(separation speed)

/(adhesive thickness) (4)

In this study, the debonding frequency of probeFigure 4 Master curves of storage modulus G *, loss
tack and 180 degree peel adhesion are 2100 andmodulus G 9, and dynamic loss tangent tan d for the
525 (rad/s) , respectively. Finally, Tse found thatPBA/P(VDF-HFA) 80/20 blend at 257C. Temperature
the relationship between T and G 9 for the rubber/( 7C) is as follows: (m )045; (≈ )040; (ƒ ) 030; (h )020;

(j ) 010; (, ) 0; (. ) 10; (s ) 25; (l ) 50. tackifier blends is expressed as follows:
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Table III WLF Fitting Parameters (C1 , C2) for PBA/P(VDF-HFA) Blends

P(VDF-HFA) Content
(wt %) 0 10 20 30 40 50

C1 5.45 5.48 5.76 7.89 17.20 17.44
C2 127.6 127.6 133.6 126.2 175.3 166.7

HFA) are surface fraction and surface tension ofT Å K1rlog G 9 (vraT ) / K2 (5)
P(VDF-HFA), respectively. Using XPS results
and surface tension measured in our previous pa-where v is the frequency for dynamic mechanical
per,23 the gs values of PBA/P(VDF-HFA) blendsproperties, and K1 and K2 are the slope and inter-
used in this article varied from 40.0 to 27.8 (dyn/sect of the T versus log G 9 plots.
cm). Since the Wa values calculated with the geo-On the other hand, Yang22 rewrites the PSA
metric mean equation for the PBA/P(VDF-HFA)tackiness T of eq. (2) as follows:
blends are between 70 and 84 erg/cm2, we judged
that the variation in the parameter Wa is veryT } WarG 9 (v1)r(A /A0) (6)
small. Consequently, the PSA tackiness T for
PBA/P(VDF-HFA) blends can be expressed as inwhere v1 is the debonding frequency, and (A /A0)
the following equation:is the kinetic term related to the viscoelastic be-

havior of adhesive. In PSA tests, the contact area
T } G 9 (v1) /G * (v2) (11)between adhesive and adherend is accomplished

through deformation of adhesive under light pres- In this study, as the plateau modulus Ge of the
sure within 1 s. Thus, the parameter A /A0 can PBA/P(VDF-HFA) 60/40 and 50/50 blends is
be calculated by creep compliance J (t ) as in the higher than 107 (dyn/cm2) (Dahlquist criterion),
following equation: the function of bonding process B should be con-

sidered. Thus, the relationship between PSA
A /A0 Å 1 0 exp{0J (t ) } á J (t ) (7) tackiness and dynamic mechanical properties for

PBA/P(VDF-HFA) blends is investigated with
where J (t ) is also expressed in terms of the stor- eq. (11), reported by Yang.22

age modulus G * (v2) , as follows: The relationship between probe tack and
G 9 (v1) /G * (v2) for the PBA/P(VDF-HFA) blends

J (t ) Å [1/G * (v2)] 1 {1/[1 / tan d2(v2)]} are shown in Figure 6. The probe tack value in-
á 1/G * (v2) for tan d ! 1 (8)

where v2 is the bonding frequency of adhesive and
corresponds to 1 rad/s. For most adhesives, tan d
! 1 since Tg is low (0207Cú ) . In eq. (6), the
parameter Wa is calculated by the geometric mean
equation as follows:

Wa Å 2(gsrgss )0.5 (9)

where gs and gss are surface tension of adhesive
and adherend (stainless steel Ç 44 dyn/cm), re-
spectively. In this study, gs values of the PBA/
P(VDF-HFA) blends are calculated by the follow-
ing equation:

gs Å f S
PBArgPBA / f S

P(VDF-HFA)rgP(VDF-HFA) (10)

where f S
PBA and gPBA are surface fraction and sur- Figure 6 Relationship between probe tack and

G 9 (v1) /G * (v2) for PBA/P(VDF-HFA) blends.face tension of PBA and f S
P(VDF-HFA) , and gP(VDF-
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creases with increasing G 9 (v1) /G * (v2) in the re-
gion of G 9 (v1) /G * (v2) Å 0 to 2 region, while the
value of probe tack is constant at G 9 (v1) /G * (v2)
values greater than 6. In this region, our result
differs from the result of water-based adhesives
reported by Yang.22 The PBA/P(VDF-HFA) blend
ratios exhibiting G 9 (v1) /G * (v2) ® 6 corre-
sponded to 100/0 and 90/10. From the results of
dynamic mechanical properties for the PBA/
P(VDF-HFA) blends, both the G * and G 9 values
decreased with decreasing P(VDF-HFA) content.
And G 9 (v1) and G * (v2) values for the PBA/
P(VDF-HFA) 100/0 and 90/10 blends revealed
1.35 1 106 Ç 2.80 1 106 and 1.60 1 105 Ç 4.98
1 105 (dyn/cm2), respectively. We explain why
the value of probe tack is constant at G 9 (v1) /
G * (v2) ® 6 region. One reason is the magnitude Figure 8 Relationship between holding power and
of G * (v2) at the bonding process. As the G * (v2) G *, G 9 at 407C and 1 Hz for PBA/P(VDF-HFA) blends:
values for the 100/0 and 90/10 blends were mark- (l ) G * ; (s ) G 9.
edly lower than Dahlquist criterion, it is pre-
sumed that the A /A0 values for the 100/0 and 90/

the PBA/P(VDF-HFA) 100/0 and 90/10 blends10 blends are nearly 1 because a complete contact
deviated from the straight line. In other words,at interface between adhesive and adherend is
for the PBA/P(VDF-HFA) blends, we think thataccomplished. The other reason is the G 9 (v1)
the linear relationship of the probe tack vs.value at debonding process. Kraus et al.24 investi-
G 9 (v1) /G * (v2) plots is obtained at G 9 (v1) ú 2.80gated the relationship between probe tack and G 9 1 106 and G * (v2) ú 4.98 1 105 (dyn/cm2).for the rosin ester tackified block copolymer adhe-

Figure 7 shows the 180 degree peel adhesionsives. They found that the maximum of probe tack
vs. G 9 (v1) /G * (v2) plots for PBA/P(VDF-HFA)was observed at G 9 Å 1 Ç 2 1 106 (dyn/cm2).
blends. The relationship between 180 degree peelThese G 9 values correspond to the G 9 values for
adhesion and G 9 (v1) /G * (v2) exhibits the reason-the 100/0 and 90/10 blends. Consequently, from
able straight line in the region exhibiting the in-above two reasons, we judge that the relationship
terfacial failure mode. This result corresponds tobetween G 9 (v1) /G * (v2) and probe tack plots for
the result reported by Yang.22 On the other hand,
the location between the 180 degree peel adhesion
and the G 9 (v1) /G * (v2) value for PBA deviates
from the straight line. It is because the failure
mode of 180 degree peel adhesion for only the PBA
component exhibited the cohesive failure of adhe-
sive layer. In the interfacial failure mode, we
think that the 180 degree peel adhesion can be
estimated with the G 9 (v1) /G * (v2) values for the
PBA/P(VDF-HFA) blends.

As shown in Figure 8, holding power increases
monotonically with increasing G *, G 9 at 1 Hz and
407C. We think that the holding power can be
advanced by blending P(VDF-HFA) into PBA be-
cause the G * and G 9 values of P(VDF-HFA) are
higher than those of PBA.

CONCLUSIONS
Figure 7 Relationship between peel adhesion and

The PSA properties, such as the 180 degree peelG 9 (v1) /G * (v2) for PBA/P(VDF-HFA) blends: (l ) in-
terfacial failure; (j ) cohesive failure of adhesive layer. adhesion, probe tack, and holding power of PBA
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